Nov. 13, 2018
Periods 1,2,4,6
Place Proportion Packet on desk
Warm Up- Fill in planner, write IXL Skills, complete pg. 24 in
packet (Warm Up side two)
Class Work - Go over packet together
Pgs. 183 #s 11, 13 ,15
Homework - Proportions and Scale Practice and Quiz

4)
$$385 = 23$$

 $8,855 = 35$
 $8,855 = 35$
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35
 35

$$\frac{20}{2.5} = \frac{2.5}{2.5}$$
 $\frac{20}{2.5} = \frac{2.5}{2.5}$
 $\frac{20}{2.5} = \frac{2.5}{2.5}$
 $\frac{48}{2.5} = \frac{2.5}{2.5}$

Answers to Warm Up (side two):

2)
$$X = $9.90$$

Solutions:

3)
$$\frac{20}{2.5} = \frac{20}{5}$$

 $\frac{120}{2.5} = \frac{3.5}{2.5}$
 $\frac{78}{48} = x$

4)
$$\frac{385}{35} = \frac{X}{23}$$

 $\frac{885}{35} = \frac{35X}{35}$
 $\frac{35}{35} = \frac{35X}{35}$

Steps to solving proportions:

1) Set up the proportion.

 $\frac{35}{.75} = \frac{X}{length in}$

- 2) Cross Products
- 3) Divide by the coefficient
- 4) X =

Scale
$$\frac{3}{5}$$
 (5.5 in Miles $\frac{35}{10}$ = $\frac{2}{100}$ (1.5 in Miles $\frac{35}{10}$ = $\frac{2}{100}$ (1.5 in Miles $\frac{35}{10}$ = $\frac{2}{100}$ (1.5 in Miles $\frac{35}{100}$ = $\frac{2}{100}$ = $\frac{2}{100}$ (1.5 in Miles $\frac{35}{100}$ = $\frac{2}{100}$ = $\frac{2}{10$

$$\frac{35}{.75} = \frac{\chi}{5.5}$$
 miles inches

Nov. 13, 2018
Period 5 Place Pages 95-96 (#s 10-17)on desk to be checked.
Warm Up - fill in planner, write down IXL Skills
Class Work - complete pgs. 98-100, #s3-10 together
Homework- Lesson 4.3 Quiz , due Wednesday

4.3 Independent Practice

6.NS.1.1

10. Jeremy has $4\frac{1}{2}$ cups of iced tea. He wants to divide the tea into $\frac{3}{4}$ -cup servings. Use the model to find the number of servings he can make.

6 servings

11. A ribbon is $3\frac{2}{3}$ yards long. Mae needs to cut the ribbon into pieces that are $\frac{2}{3}$ yard long. Use the model to find the number of pieces she can cut.

- 12. Dao has 2 ³/₈ pounds of hamburger meat. He is making ¹/₄-pound hamburgers. Does Dao have enough meat to make 10 hamburgers? Explain.
 no; He has only enough meat to make 9 ¹/₂ quarter pound hamburgers.
- 13. Multistep Zoey made $5\frac{1}{2}$ cups of trail mix for a camping trip. She wants to divide the trail mix into $\frac{3}{4}$ -cup servings.
 - a. Ten people are going on the camping trip. Can Zoey make enough $\frac{3}{4}$ -cup servings so that each person on the trip has one serving? No, it only makes $7\frac{1}{2}$ servings.
 - **b.** What size would the servings need to be for everyone to have a serving? Explain.

 $\frac{11}{20}$ of a cup; $5\frac{1}{2}$ cups \div 10 people $=\frac{11}{2}\times\frac{1}{10}=\frac{11}{20}$

c. If Zoey decides to use the $\frac{3}{4}$ -cup servings, how much more trail mix will she need? Explain.

She would need $7\frac{1}{2}$ cups total, so she would need 2 more cups of trail mix.

15. The area of a rectangular mirror is $11\frac{11}{16}$ square feet. The width of the mirror is $2\frac{3}{4}$ feet. If there is a 5 foot tall space on the wall to hang the mirror, will it fit? Explain.

yes because the height is $4\frac{1}{4}$ feet

- **16.** Ramon has a rope that is $25\frac{1}{2}$ feet long. He wants to cut it into 6 pieces that are equal in length. How long will each piece be? $4\frac{1}{4}$ feet
- 17. Eleanor and Max used two rectangular wooden boards to make a set for the school play. One board was 6 feet long, and the other was $5\frac{1}{2}$ feet long. The two boards had equal widths. The total area of the set was $60\frac{3}{8}$ square feet. What was the width?

 $5\frac{1}{4}$ feet

